10 research outputs found

    Joint User Association and UAV Location Optimization for Two-Tired Visible Light Communication Networks

    Full text link
    In this paper, an unmanned aerial vehicle (UAVs)-assisted visible light communication (VLC) has been considered which has two tiers: UAV-to-centroid and device-to-device (D2D). In the UAV-to-centroid tier, each UAV can simultaneously provide communications and illumination for the centroids of the ground users over VLC links. In the D2D tier, the centroids retransmit received data from UAV over D2D links to the cluster members. For network, the optimization problem of joint user association and deployment location of UAVs is formulated to maximize the received data, satisfy illumination constraint, and the user cluster size. An iterative algorithm is first proposed to transform the optimization problem into a series of two interdependent sub problems. Following the smallest enclosing disk theorem, a random incremental construction method is designed to find the optimal UAV locations. Then, inspired by unsupervised learning method, a clustering algorithm to find a suboptimal user association is proposed. Our simulation results show that the proposed scheme on average guarantees the users brightness 0.77 lux more than their threshold requirements. Moreover, the received bitrate plus number of D2D connected users under our proposed method is 50.69% more than the scenario in which we have RF Link instead of VLC link and do not optimize UAV location.Comment: 7 pages, 5 figures, conferenc

    Energy-Efficient Resource Allocation for Multi-IRS-Aided Indoor 6G Networks

    Full text link
    In this paper, we propose a distributed intelligent reflecting surface (IRS) assisted single-user and multi-user millimeter wave (mmWave) system. Then, we formulate the resource allocation problem as an optimization to maximize energy efficiency under individual quality of service (QoS) constraints. We first propose a centralized algorithm, and further, a low-complexity distributed one where the access point (AP) and IRSs independently adjust the transmit beamforming of AP, the phase shifts, and the on-off status of IRSs in an alternating manner until the convergence is reached. In a multi-user scenario, in the first stage, the successive convex approximation (SCA) and fractional programming (FP) approaches are applied to achieve a solution for optimization subproblems of the phase-shift coefficients and element on-off status of IRSs. Then, for the beamforming subproblem, a modified nested FP approach is proposed that finds an optimal solution for the beamforming vectors of AP. Our performance analysis on a practical scenario shows that the proposed centralized and distributed approach respectively enhances the energy efficiency by up to 55%, 42% for single-user, and up to 984% for multi-user scenarios, in comparison to the case where the on-off status and phase-shift coefficients of IRS elements are not selected optimally

    Multirate Packet Delivery in Heterogeneous Broadcast Networks

    No full text
    corecore